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Part I
Overview

• Explicit State Model Checking
– What is model checking?
– Kripke structures

• Describing the systems we want to check

– Temporal logic
• Describing the properties we want to check

– Automata-theoretic model checking
– State-explosion problem

• What can we do?

• Model Checking Programs
– A brief history of the field
– Java PathFinder
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Model Checking
The Intuition

• Calculate whether a system satisfies a certain
behavioral property:
– Is the system deadlock free?
– Whenever a packet is sent will it eventually be received?

• Testing?
– Look at all possible behaviors of a system

• Automatic, if the system is finite-state
– Potential for being a push-button technology
– Almost no expert knowledge required

• How do we describe the system?
• How do we express the properties?



12 September 2000 © Charles Pecheur and Willem Visser 2000 4

2000
Kripke Structures

• K = (props,S,R,s0,L)
–  props : (finite) set of atomic propositions

–  S : (finite) set of states

–  R : binary transitive relation (total)

–  s0 : set of initial states

–  L : maps each state to the set of propositions
      true in the state

• Often M = (S,R,L) with props and s0 implicit
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Example Kripke Structure

K = ({ p,~p},{ x,y,z,k,h},R,{x},L)

x

y

z

k

~p

~p

~p

p

hh ~p
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Property Specifications

• Linear Time
– Every moment has a unique successor

– Infinite sequences (words)

– Linear Time Temporal Logic (LTL)

• Branching Time
– Every moment has several successors

– Infinite tree

– Computation Tree Logic (CTL)

• Temporal Logic
– Express properties of event orderings in time
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CTL *

S ::= true | false | q | ~q | S ∨  S | S ∧  S | AP | EP
P ::= S | P ∨  P | P ∧  P | XP | P U P | P V P

• A (for all) and E (there exists) are path quantifiers
• X (until), U (until) and V (release) are path operators
• CTL: Every path operator is preceded by a path quantifier
• LTL: Path formulas of the form AP where the state

sub-formulas are atomic propositions
• Fp = true U p  - “eventually p” or “finally p”
• Gp = false V p - “always p” or “globally p”



12 September 2000 © Charles Pecheur and Willem Visser 2000 8

2000
CTL

Computation Tree Logic (branching):
Consider the tree of possible executions

Always ...

Sometimes ...

... Next p ... Globally p ... Finally p ... p Until q

AX  p A[p U q]AG p AF p

EX p E[p U q]EG p EF p

duals

In all states

In some state
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Mutual Exclusion Example

N1  →  T1

T1 ∧  S0 →  C1 ∧  S1

C1 →  N1 ∧  S0

N2  →  T2

T2 ∧  S0 →  C2 ∧  S1

C2 →  N2 ∧  S0

||

• Two process mutual exclusion with shared semaphore
• Each process has three states

• Non-critical (N)
• Trying (T)
• Critical (C)

• Semaphore can be available (S0) or taken (S1) 
• Initially both processes are in the Non-critical state and
   the semaphore is available --- N1 N2 S0
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

• Mutual Exclusion: K _  AG ~(C1 ∧  C2)

• Response : K _ AG (T1→ AF (C1))

• Reactive : K _ AG EF (N1 ∧  N2 ∧  S0)
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K _ AG EF (N1 ∧  N2 ∧  S0)
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K _ AG EF (N1 ∧  N2 ∧  S0)
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K _ AG EF (N1 ∧  N2 ∧  S0)
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K _ AG EF (N1 ∧  N2 ∧  S0)
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K _ AG EF (N1 ∧  N2 ∧  S0)



12 September 2000 © Charles Pecheur and Willem Visser 2000 16

2000
Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K _ AG EF (N1 ∧  N2 ∧  S0)
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K _ AG (T1→ AF (C1))
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K _ AG ( ~T1 ∨  AF (C1))
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K _ AG ( ~T1 ∨  AF (C1))
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Model Checking

• Given a Kripke structure M = (S,R,L) that represents a
finite-state concurrent system and a temporal logic
formula f expressing some desired specification, find
the set of states in S that satisfy f:

{ s ∈  S | M,s _ f }

• Normally, some states of the concurrent system are
designated as initial states. The system satisfies the
specification provided all the initial states are in the set.
We often write: K _ f
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Model Checking Complexity
 K _ f

• CTL
– O(|K| * |f|)

• LTL
– O(|K| * 2|f|)

• But, for CTL the whole transition relation must be
kept in memory!
– Binary Decision Diagrams (BDDs) often allows the

transition relation to be encoded efficiently

• The formulas are seldom very complex, hence |f|
is not too troublesome.
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Automata-Theoretic
Model Checking

• Linear time temporal logic
– Nondeterministic automata over infinite words

• Branching time temporal logic
– Alternating automata over infinite trees

• Automata-theoretic LTL model checking

• Basic idea:
– Translate both Kripke structure and LTL property into

automata and show language containment

• See papers by Vardi and Wolper
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Büchi Automata

• Accepts infinite words
• B = (∑, S, ρ, s0, F)

– ∑ is a finite alphabet
– S is a finite set of states
– ρ : S × ∑ → 2S  is the transition function
–  s0 ∈  S is the initial state (or states)
– F ⊆  S is the set of accepting states

• Given an infinite word ω=a0,a1,… over ∑ then a run of
B is the sequence s0,s1,…where si+1 ∈  ρ(si, ai)

• Let inf(π) be the set of states that occur infinitely often
on the run π, then π is accepting iff inf (π) ∩ F ≠ ∅
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Example Büchi Automaton

1 2

~p p

p

~p
• B = ({{p},{~p}},{1,2},  ρ, 1, {2})
• Example accepting words:

• (12)ω

• 1112ω

•  Example rejecting word: 121212111ω

• LTL property: GFp – “infinitely often p”
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Kripke to Büchi Automaton

• K = (props,S,R,s0,L) can be viewed as

• AK = (2props,S,ρ,s0,S) where
–  si+1 ∈  ρ(si,a) iff  (si,si+1) ∈  R and a = L(s)

– Note every state is in the accepting set, hence
all runs of the automaton is accepting

– The language of the automaton, L(AK), is the
set of all behaviors of K



12 September 2000 © Charles Pecheur and Willem Visser 2000 26

2000
Kripke to Büchi Example

x

y

z

k

~p

~p

~p

p

~ph
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Kripke to Büchi Example

x

y

z

k

~p

~p

~p p

hh
~p

~p
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Translating LTL Formulas
to Büchi Automata

• Exponential in the length of the formula
– Many heuristics optimizations are used

– Multitude of papers: CAV, LICS, etc.

T T

p

   Fp

p

Gp

p T

q

 p U q

~p ∨  q T

 G(p → Fq)

q

T
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Model Checking with
 Büchi Automata

• K _ f
• Translate K and f to Büchi Automata
• Language containment

Ð L(AK) ⊆  L(Af)
Ð L(AK) ∩ L(Af) = ∅
Ð L(Af) = L(A~f) and L(AK × A~f) = L(AK) ∩ L(A~f)

• Algorithm
– Negate formula f and create A~f

– Construct the product AK,~f = K × A~f

– If L(AK,~f ) = ∅  report YES else report NO
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Model Checking Example

• K _ AFG~p
– For all paths from some moment onwards p is

always false

• Where K is given by

x

y

z

k

~p

~p

~p

p

~ph
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Step 1

• Negate FG~p
– GFp

• Construct  Büchi Automaton for GFp

1 2

~p p

p

~p
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Step 2

• Construct the product automaton

1 2

~p p

p

~p

x

y

z

k

~p

~p

~p

p

~ph

×
X,1

Y,1

Z,1

K,1

H,2

=
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Step 3

• Check if the language is empty
• It is nonempty since there is a cycle through an

accepting state, hence K _ AFG~p
– (xkhz)ω is an accepting run

• The accepting run is also a counter-example to the
property being true

X,1

Y,1

Z,1

K,1

H,2
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Checking Nonemptiness

• A Büchi automaton accepts some word iff
there exists an accepting state reachable
from the initial state and from itself

• Can be checked in linear time

• Model Checking complexity for LTL
– O(|K| * 2|f|)
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Efficient
Nonemptiness Checking

Dfs (state s)
     Add (s,0) to VisitedStates;
     FOR each successor t of s DO
          IF (t,0) ∉ VisitedStates THEN Dfs(t) END
     END
     IF s ∈  F THEN seed := s; 2Dfs(s) END
END

2Dfs (state s)
     Add (s,1) to VisitedStates;
     FOR each successor t of s DO
          IF (t,1) ∉ VisitedStates THEN 2Dfs(t) END
          ELSEIF t = seed THEN report nonempty END
     END
END

• VisitedStates as
   HashTable
• Change Recursion
   to Iteration
• Generate successor
  states on-the-fly

Efficiency
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SPIN Model Checker

• Automata based model checker
– Efficient nonemptiness algorithm

• Translates LTL formula to Büchi automaton

• Kripke structures are described as
“programs” in the PROMELA language
– Kripke structure is generated on-the-fly during nonemptiness

checking

• http://netlib.bell-labs.com/netlib/spin/whatispin.html

– Relevant theoretical papers can be found here
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State-Explosion?

•  n concurrent processes with m states each
– Has mn states
– Worst-case, an on-the-fly model checker has to

enumerate all of them

• What can we do to reduce mn ?
– Reduce m

• Abstraction

– Reduce the effect of n
• Partial-order reductions

– Reduce n
• Symmetry reductions

We’ll consider these 2 here
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Partial-Order Reductions

• Reduce the number of interleavings of
independent concurrent transitions

•  x := 1 || y := 1  where initially x = y = 0

11

00

0110

x := 1

x := 1y := 1

y := 1

11

00

0110

x := 1

y := 1

y := 1

11

00

10

x := 1

y := 1

No Reductions Transitions Reduced States Reduced
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Basic Ideas

• Independence
– Independent transitions cannot disable nor enable each other

– Enabled independent transitions are commutative

• Partial-order reductions only apply during the
on-the-fly construction of the Kripke structure

• Based on a selective search principle
– Compute a subset of enabled transitions in a state to execute

• Sleep sets (Reduce transitions)

• Persistent sets (Reduce states)
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Persistent Set Reductions

• A subset of the enabled transitions is called persistent,
when any transition can be executed from outside the
set and it will not interact or affect the transitions inside
the set
– Use the static structure of the system to determine what goes

into the persistent set

– Note, all enabled transitions are trivially persistent

• Only execute transitions in the persistent set

• Persistent set algorithm is used within SPIN

• See papers by Godefroid and Peled
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Abstraction

• Type based abstractions
– Abstract Interpretation
– Replace integer variable with odd-even range
– Or Signs abstraction: negative,zero,positive
– Replace all operations on the concrete variable with

corresponding abstract operations
•  add(pos,pos) = pos
•  subtract(pos,pos) = negative | zero | pos
•  eq(pos,pos) = true | false

• Predicate Abstraction  (Graf, Saïdi see also Uribe)
– Create abstract state-space w.r.t. set of predicates

defined in concrete system
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Predicate Abstraction

x ≠ y

Abstract

Concrete x = y

F T

α : int × int     bool

EQ = T EQ = F

x = 0
y = 0

x = 0
y = 1

y++

EQ := F

EQ ≡ (x = y) EQ ≡ (x = y)

• Mapping of a concrete system to an abstract system, whose states
  correspond to truth values of a set of predicate
• Create abstract state-graph during model checking, or,
• Create an abstract transition system before model checking
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Example
Predicate Abstraction

Predicate: B ≡ (x = y)

Concrete Statement
 y := y + 1

Abstract Statement

y := y + 1 {x = y}
y := y + 1 {x ≠ y} {x ≠ y + 1}

 {x = y + 1}

Step 1: Calculate pre-images

Step 2: Rewrite in terms of predicates
Step 2a: Use Decision Procedures

 x = y → x = y + 1
 x ≠ y → x = y + 1

 x = y → x ≠ y + 1
 x ≠ y → x ≠ y + 1

{ x = y + 1} y := y + 1 {B}
{ B}  y := y + 1 {~B}

Step 3: Abstract Code
IF B THEN B := false 
ELSE B := true | false
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The Story so Far

• Explicit State Model Checking
– Kripke structures

• Describing the systems we want to check

– Temporal logic
• Describing the properties we want to check

– Automata-theoretic model checking
– State-explosion problem

• Partial-order reductions
• Predicate Abstraction

• Next - Model Checking Programs
– A brief history of the field
– Java PathFinder
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Model Checking Programs

• Model checking usually applied to designs
– Some errors get introduced after designs

– Design errors are missed due to lack of detail

– Sometimes there is no design

• Can model checking find errors in real programs?
– Yes, many examples in the literature

• Can model checkers be used by programmers?
– Only if it takes real programs as input
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Main Issues

• Memory
– Explicit-state model checking’s Achilles heel
– State of a software system can be complex
– Require efficient encoding of state, or,
– State-less model checking

• Input notation not supported
– Translate to existing notation
– Custom-made model checker

• State-space Explosion
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State-less Model Checking

• Must limit search-depth to ensure termination

• Based on partial-order reduction techniques

• Annotate code to allow verifier to detect
“important” transitions

• Examples include
– VeriSoft

• http://www1.bell-labs.com/project/verisoft/

– Rivet
• http://sdg.lcs.mit.edu/rivet.html
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Traditional Model Checking

• Translation-based using existing model checker
– Hand-translation

– Semi-automatic translation

– Fully automatic translation

• Custom-made model checker
– Fully automatic translation

– More flexible
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Hand-Translation

abstraction

translation

Verification model

Program

• Hand translation of program to model checker’s input notation

• “Meat-axe” approach to abstraction

• Labor intensive and error-prone
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Hand-Translation
 Examples

• Remote Agent – Havelund,Penix,Lowry 1997
– http://ase.arc.nasa.gov/havelund

– Translation from Lisp to Promela (most effort)

– Heavy abstraction

– 3 man months

• DEOS – Penix et al. 1998/1999
– http://ase.arc.nasa.gov/visser

– C++ to Promela (most effort in environment)

– Limited abstraction - programmers produced sliced system

– 3 man months
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Semi-Automatic Translation

• Table-driven translation and abstraction
– Feaver system by Gerard Holzmann
– User specifies code fragments in C and how to translate

them to Promela (SPIN)
– Translation is then automatic
– Found 75 errors in Lucent’s PathStar system
–  http://cm.bell-labs.com/cm/cs/who/gerard/

• Advantages
– Can be reused when program changes
– Works well for programs with long development and

only local changes
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Fully Automatic Translation

• Advantage
– No human intervention required

• Disadvantage
– Limited by capabilities of target system

• Examples
– Java PathFinder 1- http://ase.arc.nasa.gov/havelund/jpf.html

• Translates from Java to Promela (Spin)

– JCAT - http://www.dai-arc.polito.it/dai-arc/auto/tools/tool6.shtml
• Translates from Java to Promela (or dSpin)

– Bandera - http://www.cis.ksu.edu/santos/bandera/
• Translates from Java bytecode to Promela, SMV or dSpin
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Custom-made Model Checkers

• Allows efficient model checking
– Often no translation is required
– Algorithms can be tailored

• Translation-based approaches
– dSpin

• Spin extended with dynamic constructs
• Essentially a C model checker
• http://www.dai-arc.polito.it/dai-arc/auto/tools/tool7.shtml

– Java Model Checker (from Stanford)
• Translates Java bytecode to SAL language
• Custom-made SAL model checker
• http://sprout.stanford.edu/uli/
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Java PathFinder 2

• Based on new Java Virtual Machine
– Handle all of Java, since it works with bytecodes

• Written in Java
– 1 month to develop version with only integers

• Efficient encoding of states
– Complex states are translated to integer vector
– Garbage collection
– Canonical heap representation

• http://ase.arc.nasa.gov/jpf
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JPF2 Core Decisions

• Explicit-state model checking

• Build own Java Virtual Machine
– Emphasis on memory management not speed

– Bytecode level assures language coverage

• Modular design to allow flexible system
– Different search algorithms from testing to model

checking
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JPF2 Structure

Test Model 
Check
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Our JVM

• Written in Java
– Java-in-Java at SUN and Rivet at MIT

• Use JavaClass package
– Class loading, Internal class file structure, etc.

• Initial implementation took 1 month!

• State encoded in complex data-structures

• Exploit Java in Java at every opportunity
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Memory Management

• SystemState
– KernelState, i.e. JVM state
– Scheduler, used for exploring all paths

• SystemState goes on Stack to allow backtracking
– Use “clone” operation to store states on the stack
– It can be slow

• KernelState goes in HashTable to record states
– Generic part of system, stores byte-vectors
– Use “Pools” to reduce complex state to byte-vector
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JVM State

Dynamic Area
List of Objects

Static Area
List of Classes

Threads
List of Threads

Frame
Operand Stack

Thread
Stack of Frames

FieldsMonitor
Object

Class
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Reducing State Size

• Use intermediate tables/pools for each major class
– Threads, Objects, Fields, Monitors

• Each time an object of the class must be stored,
see if it is in the table, if so return the index, else
insert it into next open slot and return the index

• Works well if tables don’t become to big

• Optimization
– Only calculate index when object has changed.
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Reducing the State Space

• Partial-order reductions
– Vital for efficient explicit-state model checking
– Must be able to identify independent transitions

• Static analysis

• Abstraction
– Under-approximations

• Slicing, i.e. a cultured “meat-axe”

– Over-approximations
• Predicate abstraction
• Type-based abstraction
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Slicing in JPF

• JPF uses Bandera’s slicer
• Bandera slices w.r.t.

– Deadlock - i.e. communication statements
– Variables occurring in temporal properties
– Variables participating in race-violations

• Used with JPF’s runtime analysis

• More examples of slicing for model checking
– Slicing for Promela (Millet and Teitelbaum)

• http://netlib.bell-labs.com/netlib/spin/ws98/program.html

– Slicing for Hardware Description Languages (Shankar et al.)
• http://www.cs.wisc.edu/~reps/
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JPF Abstraction Technique

• Find abstraction mapping (α) by
user guidance

• Use decision procedures to
automatically compute abstract
interpretation of concrete transitions

• Validity checking of pre-images

• Over approximation with
nondeterminism

 

x = m
y = n

x = m
y = n+1

y++

EQ := EQ ? F : T or F

EQ ≡ (x = y)
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JPF’s Java Abstraction

• Annotations used to indicate abstractions
Ð Abstract.remove(x);

Abstract.remove(y);
Abstract.addBoolean(ÒEQÓ, x==y);

• Tool generates abstract Java program
– Using Stanford Validity Checker (SVC)
– JVM is extended with nondeterminism to handle over

approximation

• Abstractions can be local to a class or global
across multiple classes
Ð Abstract.addBoolean(ÒEQÓ, A.x==B.y);

– Dynamic predicate abstraction, since it works across instances
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Runtime Analysis

• Execute program once, and accumulate
information to be analyzed

• Analysis can reveal an error potential
although an error did not occur during the run
– Looking for “footprints” of errors

• Data race violations with Eraser algorithm

• Lock order violations that lead to deadlock
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Example Usage

• Deep-Space 1 software deadlocked in flight

• Create a Java program from the Lisp

• Too large to model check (1060 states)

• Do race analysis and find violation

• Create slice (with Bandera) w.r.t. variable
for which race violation occurred

• Model Check slice and find error (instantly)
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Conclusions

• Low-hanging fruit principle
– Errors always obvious (in hindsight!)
– Model checkers are good at finding obvious errors

• Combine many different techniques
– Abstraction, slicing, runtime analysis, etc.

• Current work
– Adding property specification language
– Finding “real” counter-examples during abstraction
– Defining “environments” for Java programs

•  htttp://ase.arc.nasa.gov/jpf
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Part II
Symbolic Model Checking

• Principles
– BDDs

– Symbolic MC
algorithm

• Tools: SMV
– Principles

– Language

– Variants

• Applications in Software
– Model-based autonomy:

Livingstone

– Robot control: TCL

Based on material from:

– Edmund Clarke

– Marius Minea

– Reid Simmons
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Symbolic Model Checking
Principles
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What is it?

Instead of considering each individual state,

Symbolic model checking... x

y

0 1 2 ...
0

1
...
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What is it?

Instead of considering each individual state,

Symbolic model checking...

• Manipulates sets of states,
x

y

0 1 2 ...
0

1
...
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What is it?

Instead of considering each individual state,

Symbolic model checking...

• Manipulates sets of states,

• Represented as boolean formulas,

x

y

0 1 2 ...
0

1
...

x=2 ∨  y=1
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What is it?

Instead of considering each individual state,

Symbolic model checking...

• Manipulates sets of states,

• Represented as boolean formulas,

• Encoded as binary decision diagrams.

x

y

0 1 2 ...
0

1
...

x=2 ∨  y=1

1 0

x=2

y=1
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What is it?

Instead of considering each individual state,

Symbolic model checking...

• Manipulates sets of states,
– Can handle very large state spaces (1050 +)

• Represented as boolean formulas,
– Suited for boolean/abstract models

• Encoded as binary decision diagrams.
– The limit is BDD size (hard to control)

x

y

0 1 2 ...
0

1
...

x=2 ∨  y=1

1 0

x=2

y=1
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Boolean Functions

• Represent a state as boolean variables

s = b1, ..., bn

Non-boolean variables => use boolean encoding

• A set of states as a boolean function

s in S  iff  f(b1, ..., bn) = 1

• A transition relation as a boolean function
over two states

s → s'  iff  f(b1, ..., bn, b'1, ..., b'n) = 1
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Binary Decision Trees

• Encoding for boolean functions

• Notational convention:
= if  c then e else e'
= (c ? e : e')

• Always exists
but not unique

a

b

c

01

1

c

01
c

e e'

(a | b) => c
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From Trees to Diagrams

• Fixed variable ordering
"layered" tree a

b

c

0 1 0 1 1101

c c c

b

(a | b) => c



12 September 2000 © Charles Pecheur and Willem Visser 2000 78

2000
From Trees to Diagrams

• Fixed variable ordering
"layered" tree

• Merge equal subtrees
a

b

c

0 1 0 1 1101

c c c

b

(a | b) => c
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From Trees to Diagrams

• Fixed variable ordering
"layered" tree

• Merge equal subtrees

• Remove nodes with
equal subtrees

=> Ordered Binary Decision Diagram

a

b

01

c c

b

(a | b) => c
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[Ordered] Binary
Decision Diagrams

• [O]BDDS for short

• Unique normal form
– for a given ordering and

– up to isomorphism

=> compare in constant time
(using hash table)

a

b

01

c

(a | b) => c
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Computations with BDDs

• Negation !f:
swap leaves 0 and 1.

• Boolean combinator f#g:
(b ? f' : f'') # (b ? g' : g'') = (b ? f'#g' : f''#g'')
cache results –> O(|f|.|g|) time

• Instantiation f[b=1], f[b=0]:
 (b ? f' : f'')[b=1] = f'

• Quantifiers exists b . f, forall  b . f :
exists b . f =  f[b=1] | f[b=0]
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Variable Ordering

• Must be the same for all BDDs

• Size of BDDs depends critically on ordering

• Worst case: exponential w.r.t. #variables
– sometimes exponential for any ordering

e.g. middle output bit of n-bit multiplier

• Finding optimum is hard (NP-complete)
=> optimization uses heuristics
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Transition Systems with BDDs

Given boolean state variables v = b1, ..., bn

a set of states as a BDD p(v)

a transition relation as a BDD T(v, v')

we can compute the predecessors and successors of p
as BDDs:

(pred p)(v) = exists v' . T(v, v') & p(v')

(succ p)(v) = exists v' . p(v') & T(v', v)

ppred p succ p
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Checking Formulas
with BDDs

Functional evaluation as set of states:

• for every formula p, build the BDD p(v)
of the set of states that satisfy p

• Top level: for a set of initial states I,

I satisfy p  iff  !p & I = 0

• p = op(q,r) => build p(v) based on q(v), r(v)
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CTL temporal logic

Computation Tree Logic (branching):
Consider the tree of possible executions

Always ...

Sometimes ...

... Next p ... Globally p ... Finally p ... p Until q

AX  p A[p U q]AG p AF p

EX p E[p U q]EG p EF p

duals

In all states

In some state
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CTL operators
as BDDs

(EX p)(v) = (pred p)(v) = exists v' . T(v, v') & p(v')

(EG p)(v) = (gfp U . p & EX U)(v)

(E[p U q])(v) = (lfp  U . q | (p & EX U))(v)

All others can be expressed as EX/EG/EU

EF p = E[1 U p]
AX  p = !EX !p
AG p = !EF !p
AF p = !EG !p
A[p U q] = !E[!q U !p & !q] & ! EG !q
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Compute lfp  U . F[U] as a BDD:
U0(v) = 0

U1(v) = F[U0](v) = F[0](v)

...

Un+1(v) = F[Un](v) = Fn[0](v)

until Un(v) = Un+1(v) = (lfp  U . F[U])(v)

– Convergence assured because finite domain

– Dual construction for gfp

Evaluating Fixpoints
with BDDS

F[0]

F[F[0]]

lfp  U . F[U]

...

0
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CTL with BDDS: Example

process P(id) {
  repeat {
    x=getFlag();
  } until  x=false;
  setFlag();
  CS(id);
  resetFlag();
}

start P(1);
start P(2);

EF p = lfp  U . p | EX UI

p

U0 = 0
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CTL with BDDS: Example

process P(id) {
  repeat {
    x=getFlag();
  } until  x=false;
  setFlag();
  CS(id);
  resetFlag();
}

start P(1);
start P(2);

EF p = lfp  U . p | EX UI

p = U1

U0 = 0
U1 = p | EX U0 = p
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CTL with BDDS: Example

process P(id) {
  repeat {
    x=getFlag();
  } until  x=false;
  setFlag();
  CS(id);
  resetFlag();
}

start P(1);
start P(2);

EF p = lfp  U . p | EX UI

p

U0 = 0
U1 = p | EX U0 = p
U2 = p | EX U1
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CTL with BDDS: Example

process P(id) {
  repeat {
    x=getFlag();
  } until  x=false;
  setFlag();
  CS(id);
  resetFlag();
}

start P(1);
start P(2);

EF p = lfp  U . p | EX UI

p

U0 = 0
U1 = p | EX U0 = p
U2 = p | EX U1

...
U5 = p | EX U4

U6 = p | EX U5 = U5

=> EF p = U5

=> EF p & I ≠ 0
=> AG !p does not hold
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Fairness, LTL

• CTL+fairness:
– Only check executions where fairness

conditions c1, ..., cn hold infinitely often

– Symbolic evaluation: express c1, ..., cn as
BDDs,  modified algorithms for EX, EG, EU.

• Symbolic model checking of LTL
– Convert LTL formula to Büchi automaton

– Encode automaton in transition relation

– Express acceptance condition in CTL+fairness
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Bounded Model Checking

• Principle:
– n+1 copies of state variables v0, .., vn

– Unroll transition relation n times T(vk-1, vk)

– Embed property to be satisfied

– Verify satisfiability with SAT procedure

• Verifies traces up to length n
– Iterate over values of n => breadth-first search

• No state space explosion (polynomial space)

• Usually fast (but worst case is exponential time)
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Symbolic Model Checking
Summary

• Principle: compute over sets of states
encoded as BDDs.

• Can handle huge state spaces.

• CTL + fairness, LTL.

• Some tweaking may be needed.
– variable ordering

• Some models blow up nevertheless.

• New alternative: SAT-based (bounded).
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Symbolic Model Checking
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Symbolic Model Checking
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Symbolic Model Checking Tools:

SMV
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Overview

• SMV = Symbolic Model Verifier.

• Developed by Ken McMillan
at Carnegie Mellon University.

• Modeling language for transition systems
based on parallel assignments.

• Specifications in temporal logic CTL.

• BDD-based symbolic model checking:
can handle very large state spaces.
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What SMV Does

MODULE user(...) ...

MODULE main
VAR turn: {1, 2};
    user1: user(...);
...

SPEC AG !(
    (user1.state = c) &
    (user2.state = c))

-- specification AG ...
   is false
-- as demonstrated by ...
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
...

resources used: ...

smv mutex.smv

Model

Counter-example
Specification

mutex.smv <stdout>
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SMV Program
Example (1/2)

MODULE user(turn,id,other)
VAR state: {n, t, c};
DEFINE my_turn :=
   (other=n) | ((other=t) & (turn=id));
ASSIGN
init(state) := n;
next(state) := case
   (state = n) : {n, t};
   (state = t) & my_turn: c;
   (state = c) : n;
   1 : state;
esac;

SPEC AG((state = t) -> AF (state = c))

n

t

c
my_turn

!my_turn
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SMV Program
Example (2/2)

MODULE main
VAR turn: {1, 2};
    user1: user(turn, 1, user2.state);
    user2: user(turn, 2, user1.state);
ASSIGN
init(turn) := 1;
next(turn) := case
   (user1.state=n) & (user2.state=t): 2;
   (user2.state=n) & (user1.state=t): 1;
   1: turn;
esac;

SPEC AG !((user1.state=c) & (user2.state=c))
SPEC AG !(user1.state=c)
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Diagnostic Trace
Example

-- specification AG (state = t -> AF state = c) (in
module user1) is true

-- specification AG (state = t -> AF state = c) (in
module user2) is true

-- specification AG (!(user1.state = c & user2.state =
c)... is true

-- specification AG (!user1.state = c) is false
-- as demonstrated by the following execution sequence
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
user1.state = t

state 1.3:
user1.state = c
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• The SMV program defines:
– a finite transition model M (Kripke structure),
– a set of possible initial states I (may be several),
– specifications P1 .. Pm (CTL formulas).

• For each specification P, SMV checks that
∀  so ∈  I  .  M, so |= P

Note: SPEC !P  is not the negation of SPEC P:
both can be false (in some initial states),
both can be true (vacuously when I=∅ ).

The Essence of SMV
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Variables and Transitions
(Assignment Style)

VAR state : {n, t, c};
ASSIGN
init( state ) := n;
next( state ) := case
   ( state  = n) : {n, t}; ...
esac;

• Finite data types (incl. numbers and arrays).

• Usual operations x&y , x+y , etc., case  statement.

• All assignments are evaluated in parallel.

• No control flow (must be simulated with vars).

• SMV detects circular and duplicate assignments.
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Defined Symbols

DEFINE my_turn  :=
   other=n | (other=t & turn=id);
ASSIGN
next(state) := case ...
   (state = t) & my_turn :  c; ...
esac;

• Defines an abbreviation (macro definition).

• No new state variable is created
=> no added complexity for model checking.

• No type declaration is needed.
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Modules

MODULE user (turn,id,other)
VAR ...
ASSIGN ...

MODULE main
VAR user1: user (turn,1,user2.state);
    ...

• Parameters passed by reference.
• Top-level module main .
• Composition is synchronous by default:

all modules move at each step.
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Records

Modules without parameters and assignments.

MODULE point
VAR  x : {0,1,2,3,4,5};
     y : {0,1,2,3,4,5};

MODULE main
VAR  p : point ;
ASSIGN
   init(p.x) := 0; init(p.y) := 0;
   ...
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Processes

VAR node1: process  node(1);

    node2: process  node(2);

• Composition of processes is asynchronous:
one process moves at each step.

• Boolean variable running  in each process
– running =1 when that process is selected to run.
– Used for fairness constraints (see later).
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Specifications

SPEC AG ((state = t) -> AF (state = c))

"Whenever state t  is reached, state c  will
always eventually be reached."

• Standard CTL syntax:
AX p , AF p , AG p , A[p U q] , EX p , ...

• Can be added in any module.

• Each specification is verified separately.
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Fairness

MODULE user(turn,id,other)
VAR ...
ASSIGN ...
SPEC AG AF (state = c)
FAIRNESS (state = t)

• Check specifications, assuming fairness
conditions hold repeatedly (infinitely often).

• Useful for liveness properties.

• Fair scheduling: FAIRNESS running

n

t

c
my_turn

!my_turn
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Variables and Transitions
(Constraint Style)

VAR pos: {0,1,2,3,4,5};
INIT pos < 2
TRANS (next(pos)-pos) in {+2,-1}
INVAR !(pos=3)

• Any propositional formula is allowed
=> flexible for translation from other languages.

•  INVAR p    is equivalent to INIT p
TRANS next(p)

but implemented more efficiently.

• Risk of inconsistent models (TRANS p & !p ).
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Well-Formed Programs?

• In assignment style, by construction:
– always at least one initial state,

– all states have at least one next state,

– non-determinism is apparent (unassigned
variables,set assignments, interleaving).

• In constraint style:
– INIT  and TRANS constraints can be inconsistent,

– the level of non-determinism is emergent from
the conjunction of all constraints.
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Inconsistency

• Inconsistent INIT  constraints
=> inconsistent model: no initial state.
– SPEC 0 (or any SPEC P) is vacuously true.

• Inconsistent TRANS constraints
=> deadlock state: state with no next state
=> transition relation is not complete.
– SMV does not work correctly in this case.

– SMV will detect and report it.
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Variable Ordering

• BDDs require a fixed variable ordering .
– Critical for performance (BDD size).

– Best one is hard to find (NP-complete).

• SMV does not optimize by default but
– can read, write ordering in a file,

– can search for better ordering on demand.



12 September 2000 © Charles Pecheur and Willem Visser 2000 115

2000
Re-ordering Variables

Using command line options:
smv -o demo.var

Outputs variable ordering to demo.var .
demo.var  is text, can be re-ordered manually.

smv -i demo.var

Inputs variable ordering from demo.var .
smv -reorder

Does variable re-ordering when BDD size exceeds a
certain (configurable) limit.

smv -reorder -oo demo.var

Outputs to demo.var  after each change.
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Re-ordering Variables
Method for Tough Cases

Problem (Livingstone ISPP model):
smv ispp.smv

-> Memory overflow.
smv -reorder ispp.smv

-> keeps re-ordering again and again...

Solution:
smv -reorder -oo ispp.var ispp.smv

Wait until "enough" re-ordering (statistics).
^C

smv -i ispp.var ispp.smv
-> Goes to completion (1050 states).
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Availability

• Freely downloadable.

• Source or binaries for Unix
(SunOS4, SunOS5, Linux x86, Ultrix).

• Windows NT port (Dong Wang).

• see http://www.cs.cmu.edu/~modelcheck/smv.html
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NuSMV

• From ITC-IRST (Trento, Italy) and CMU.

• New version of SMV, completely rewritten:
– Same language as SMV.

– Modular, documented APIs, easily customized.

– Specifications in CTL or LTL.

– Graphical User Interface.

– Usually faster but uses more memory.

• See http://sra.itc.it/tools/nusmv/index.html
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Other Related Tools

• Cadence SMV (Cadence Berkeley Labs)
– From Ken McMillan, original author of SMV.
– Supports refinement, compositional verification.
– New language but accepts CMU SMV.
– see http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

• BMC  = Bounded Model Checker (CMU)
– Uses SAT procedures instead of BDDs:

bounded depth but usually faster, less memory.
– Simple SMV-like language (no modules).
– Early beta version.
– see http://www.cs.cmu.edu/~modelcheck/bmc.html
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SMV
Summary

• BDD-based symbolic model checker.

• Modeling language based on synchronous
transition systems.

• Constraint style: more versatile, less strict
=> good for use as back-end tool.

• 1st generation: CMU

• 2nd generation: Cadence, NuSMV

• Variant: BMC (SAT based)
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SMV
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Symbolic Model Checking
Applications in Software
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Applications of
Symbolic Model Checking

• Used in industry for hardware design
– Commercial tools (Cadence)
– Fits well with boolean modeling

• Some success stories in protocol design
– Cache coherence of IEEE Futurebus+
– HDLC

• Research stage for software design
– Gap between programming/design language

and verification modeling language.
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Model-Based Autonomy

• Unattended control of a complex device
(e.g. a spacecraft)

• Based on AI technology

• General reasoning engine +
application-specific model

• Use model to respond to
unanticipated situations

=> Verify the model  !

Reasoning
Engine

Model

commands status

Spacecraft

Autonomous controller

model of
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Verification
of Autonomy Models

Domain
Model

SMV
Model

Domain
Requirements

SMV
Specifications

Domain
Trace

SMV
Trace

Model-Based
Autonomous
Controller

SMV

T
R
A
N
S
L
A
T
O
R

Model-Based Autonomy Verification
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 The Livingstone
Diagnostic System

Mode
Ident.

Mode
Recov.

Executive

Livingstone

commands sensors

state goal path

• Mode identification &
recovery:
– identify current state

(including faults)

– find path to goal state

• Model-based

• From NASA Ames

• Run in space
(DS- 1, May 1999)
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Livingstone Models

• Models = concurrent
transition systems

• Qualitative values
=> finite state

• Nominal/fault modes

• Probabilities on
faults

ClosedClosed

ValveValve

OpenOpen StuckStuck
openopen

StuckStuck
closedclosed

OpenOpen CloseClose

p=0.01p=0.01

inflow = outflow = 0
Courtesy Autonomous Systems Group, NASA Ames

p=0.05p=0.05
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Formalizing the Model

Livingstone model SMV model

atomic component module

compound module module

variables scalar variables

structures module variables

mode transitions TRANS

model constraints INVAR

initial state INIT

Main difficulty is translating Livingstone’s flat name space



12 September 2000 © Charles Pecheur and Willem Visser 2000 129

2000
Translating Models

MODULE valve
VAR mode: {Open,Closed,

StuckO,StuckC};
cmd: {open,close};

DEFINE faults:={StuckO,StuckC};
TRANS
  (mode=Closed & cmd=open) ->
    (next(mode)=Open |
      next(mode) in faults)

Livingstone Model SMV Model

Livingstone
Autonomous
Controller

SMV
Symbolic

Model Checker

(defcomponent valve ()
  (:inputs (cmd :type valve-cmd))
 ...
  (Closed :type ok-mode
    :transitions
      ((do-open :when (open cmd)
        :next Open) ...))
  (StuckC :type :fault-mode ...)
  ...)
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Livingstone Requirement SMV Requirement

Translating Requirements

SPEC AG (
  (!broken) ->
  EF (ISPP.valve.flow-in = high))

(defverify ...
  (:specification
    (always (globally (implies
      (not (broken))
      (exists (eventually
        (high flow-in))))))

• Declaration (defverify ...) added to the Livingstone model.

• Temporal logic formulas (CTL) in Livingstone syntax.

• Auxiliary predicates (e.g. failed component).

• High-level property patterns (e.g. reachability of modes).
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• Use atmosphere from Mars to
make fuel for return flight.

• Livingstone controller developed
at NASA Kennedy.

• Components are tanks, reactors,
valves, sensors...

• Exposed improper flow modeling.

• Very "loose" state space:
– 1050 states

– all states reachable in 3 steps

Application
 In-Situ Propellant Production

CO2 + 2H2 —> CH4 + O2

Mars
atmosphere

oxidizerfuel

on-board
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TDL:
Task Description Language

• Extension of C++

• Task decomposition, task synchronization,
monitoring, exception handling

• From Carnegie Mellon University

• Used for robot control architectures
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Formalizing TDL

TDL model SMV model

task module

task/subtask relationship module variables

task state scalar variables

state transitions ASSIGN

temporal constraints INVAR and parameters

asynchronous nature PROCESS variables
and FAIRNESS constraints
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Verifying Task Descriptions

Work by Reid Simmons (CMU)

• Can verify temporal properties
of hierarchical tasks
– deadlock, safety, liveness, …

– can handle conditional execution

• In progress:
– monitoring and exception handling

– iteration and recursion

A

B C

D E
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Applications of SMV
Summary

• Symbolic model checking:
OK for hardware, quid for software?

• Needs translation from programming
language to verification language and back!

• 2 examples for autonomy software using
SMV.
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Applications of SMV
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